首页> 外文OA文献 >Quasi-analytic solutions of analytic ordinary differential equations and o-minimal structures
【2h】

Quasi-analytic solutions of analytic ordinary differential equations and o-minimal structures

机译:解析常微分方程和o极小结构的拟解析解

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

It is well known that the non-spiraling leaves of real analytic foliations of codimension 1 all belong to the same o-minimal structure. Naturally, the question arises if the same statement is true for non-oscillating trajectories of real analytic vector fields. We show, under certain assumptions, that such a trajectory generates an o-minimal and model complete structure together with the analytic functions. The proof uses the asymptotic theory of irregular singular ordinary differential equations in order to establish a quasi-analyticity result from which the main theorem follows. As applications, we present an infinite family of o-minimal structures such that any two of them do not admit a common extension, and we construct a non-oscillating trajectory of a real analytic vector field in dimension 5 that is not definable in any o-minimal extension of the real numbers
机译:众所周知,余维1的真实分析叶的非螺旋叶都属于相同的O最小结构。当然,对于真实解析矢量场的非振荡轨迹,是否同样的说法正确,就会出现问题。我们表明,在某些假设下,这样的轨迹会生成o最小值和模型完整的结构以及解析函数。该证明使用不规则奇异常微分方程的渐近理论,以建立一个准解析性结果,从该结果中可以得出主要定理。作为应用程序,我们提出了一个无限的o最小结构族,以使它们中的任何两个都不接受共同的扩展,并且我们构造了一个在5维中不能定义的实解析矢量场的非振荡轨迹。 -实数的最小扩展

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号